Sino-atrial nodal cells of mammalian hearts: ionic currents and gene expression of pacemaker ionic channels.

نویسنده

  • Hiroyasu Satoh
چکیده

The cardiac pacemaker is a sino-atrial (SA) nodal cell. The signal induced by this pacemaker is distributed over the heart surface by a specialised conduction system and is clinically recorded as the ECG. The SA nodal cells are highly resistant to cardiac failure and ischemia. Under calcium overload conditions, some dysrythmias of SA nodal cells occur easily. Morphological analysis under these conditions shows swelling of the cisternae of the Golgi apparatus, with little or no other histological change or damage being observed. The rate of sinus rhythm is quite different between various species. The investigations of SA nodal cells have so far clarified the pacemaker mechanisms involved. A number of ionic channel currents or pacemaker currents, contribute to the depolarization of the pacemaker potential (phase 4). This will not occur with a single current. Recent experiments have identified several novel pacemaker currents and have also revealed several differences in the pacemaker currents between species. The marked hyperpolarization-activated inward current (I(f)) appears in SA nodal cells of most species, while the inwardly rectifying K+ current (I(K1)) with masked I(f) current is found in those of the rat and monkey. In addition, the rapidly activated current (I(Kr)) and slowly activated current (I(Ks)) of the delayed rectifier K+ current (I(K)) contribute to the pacemaker potential in guinea pig SA nodal cells, with only the I(Ks) current in porcine SA nodal cells and only the I(Kr) current in the rat and rabbit. These differences in ionic channels presumably result from differences in gene expression. Some smooth muscle cells also possess the capacity to beat spontaneously. Uterine smooth muscle cells also exhibit an I(f) current. The basal mechanism for spontaneous activity in both SA nodal cells and smooth muscle cells is almost the same, but some differences in the ionic channels and their genetic expression may contribute to their respective pacemaker currents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تأثیــر نیکــل بر مسدود کردن جریان یونــی گذرای کلسیمــی سلولهای گــره سینوسی ـ دهلیزی دست نخورده و سالم قلب خرگوش

The mammalian sino-atrial node is not a uniform tissue in histological and electrophysiological terms. The differences in ionic currents underlying the regional differences in electrial activity are only just beginning to be understood. One of the ionic currents it is thought to play a role in the center of sino-atrial node for action potential upstroke should be transient Ca+2 current ...

متن کامل

Functional role of L-type Cav1.3 Ca2+ channels in cardiac pacemaker activity.

The spontaneous activity of pacemaker cells in the sino-atrial node (SAN) controls the heart rhythm and rate under physiological conditions. Pacemaker activity in SAN cells is due to the presence of the diastolic depolarization, a slow depolarization phase that drives the membrane voltage from the end of an action potential to the threshold of a new action potential. SAN cells express a wide ar...

متن کامل

Effect of endotoxemia on heart rate dynamics in rat isolated perfused hearts

Introduction: Beat-to-beat variation in heart rate shows a complex dynamics, and this complexity is changed during systemic inflammatory response syndrome (e.g. sepsis). It is not known whether or not cardiac pacemaker dynamical rhythm is affected by sepsis. The aim of this study was to investigate heart rate dynamics of isolated heart as well as expression of pacemaker channels (HCN) in a r...

متن کامل

Pacemaker mechanism of porcine sino-atrial node cells.

In cardiac sino-atrial node (SAN) cells, time- and voltage-dependent changes in the gating of various ionic currents provide spontaneous, stable and repetitive firing of action potentials. To address the ionic nature of the species-dependent heart rate, action potentials and membrane currents were recorded in single cells dissociated from the porcine SAN, and compared with those from SAN cells ...

متن کامل

Ionic currents activated during hyperpolarization of single right atrial myocytes from cat heart.

Whole-cell recording techniques were used on single right atrial myocytes to study the ionic currents that may be responsible for the diverse diastolic voltage characteristics of atrial tissue. Ionic currents were activated by hyperpolarizing voltage pulses negative to -30 mV. In general, four different types of cells were identified based primarily on the ionic currents elicited during hyperpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi

دوره 39 5  شماره 

صفحات  -

تاریخ انتشار 2003